Journal of Pure and Applied Algebra 32 (1984) 21-32 21
North-Holland

COMMUTATIVE TORSION STABLE RINGS

Robert DAMIANO* and Jay SHAPIRO
George Mason University, Fairfax, VA 22030, USA

Communicated by H. Bass
Received 4 February 1983

Introduction

All rings in our paper are assumed to be commutative with identity. A localizing
subcategory (hereditary torsion class) is called stable if it is closed under taking
injective envelopes. A ring R is called stable if every localizing subcategory of
Mod-R is stable. This is equivalent to the following: For any R-module M and for
any injective R-module E the relation Hom(M, E)=0 implies Hom(E(M), E)=0
where E{M) is the injective envelope of M. Examples of such a ring include all
commutative rings which are either noetherian or perfect.

It has been shown in [1] and [8] that stable rings whether in a commutative or
noncommutative setting have properties similar tc commutative noetherian rings. In
this paper we present more evidence on the closeness of commutative stable rings
to commutative noetherian rings. We also give numerous examples of stable rings.

In Section 1 we give the basic results on stable rings which are of interest by
themselves as well as useful later on. In Section 2 we present some examples.
Previously, the only known examples of stable rings were either noetherian or
perfect. We give families of stable rings which are neither. In Section 3 we prove
that stability plus various other assumptions imply a ring is noetherian. As
corollaries we are able to show that certain rings of the form K+ P, where P is =
maximal ideal of a K algebra, have infinite global dimension and are not cohereni.

Egr(M) (or E(M) when there is no ambiguity) will denote the injective envelope
of an R-module M, and Mod-R is used to denote the category of R-modules. Given
an ideal 7 of R and an R-module M, ann,,/ is the largest submodulie of M which
is killed by 1. Finally given a module M and a prime ideal P, Ap is the localization
of M at P.

1. Basic results

In this section we present basic results about commutative stable rings that will
* Current address: IBM Corporation, Poughkeepsie, New York.
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be used throughout the paper. These results, which are well known when R is
noetherian (see [6] and [10] for instance), also highlight the fact that stable rings are
a generalization of noetherian rings.

Proposition 1.1. If R is a stable ring, then so is every homomorphic image of R.

Proof. Let R=R/I be a factor ring of R. Assume Homg(M, E) =0 where E is an
injective R-module and M is an arbitrary R-module. Clearly Homgz(M, E)=0.
Recall that for any R-module X, Eg(X)={eeEr(X) ] el=0}. Thus
Homg(M, ER(E)) =0, since any homomorphic image of M is killed by 7. So by the
stability of R, Homg(ER(M), Ex(E))=0. Since Ez(M)CEx(M) we have the
proposition. [J

The Gabriel dimension will be defined in a categorical setting and the Gabriel
dimension of a ring R is the Gabriel dimension of the category Mod-R. Let ¢ be
a Grothendieck category. %, is the smallest localizing subcategory of ¢ which is
generated by the objects of ¢ with finite length; 2, is the smallest localizing sub-
category of ¢ containing those objects M € ¢ that have finite length in the quotient
category ¢/9%,, etc. We get a transfinite filtration 2,C 2,C--C 2C---, the
Gabriel filtration, where %,, for a limit ordinal a, is defined as usual. An object
M e Zg for some § has Gabriel dimension and G-dim(M) =« if @ =min{ g l Me %4}
otherwise M does not have Gabriel dimension. The Grothendieck category ¢ has
Gabriel dimension and G-dim(¢)=y if ¢ = U{@a[as y} and y is the smallest
ordinal with this property. If an R-module M is noetherian, then it has Gabriel
dimension. For details and proofs see [4]. Note that their definition is slightly dif-
ferent than ours since they let %,={0}. However, for infinite ordinals the defini-
tions agree.

We say a ring R is seminoetherian if it has Gabriel dimension. Such rings have
two properties that are useful to us. First, given a nonzero R-module M, assg(M),
(or ass(M) when there is no ambiguity) which denotes the set of prime ideals of R
associated to M, is not empty if R is seminoetherian. Second, to check stability in
a seminoetherian ring we only have to check some of the localizing subcategories
of Mod-R. We will go into more detail on this later. It turns out that all the examples
of stable rings we give in the paper are in fact seminoetherian. However, we don’t
know if this is by necessity.

Given an R-module M, S(M) will be the sum of all submodules of M which are

isomorphic to R/P for some prime ideal P (clearly Pe ass(M)). If R is semi-
noetherian, S(M) is essential in M.

Proposition 1.2. Le: R be a seminoetherian stable ring and let M and N be

R-modules. Then Komg(M,N)#0 if and only if there exists Qeass(M) and
Peass(N) such thar Qc P.
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Proof. The ‘if’ directic is clear. Conversely, assume Homg(M, N)#0. Then
Homg(S(M), N)#0 sinc. R is seminoetherian and stable. Thus Homg(R/Q, N)#0
for some Qe ass(M). Let f: R/Q— N be nonzero. There exists Peass(f(R/Q)C
ass(N). Clearly QcP. [

For an R-module M we define the support of M, denoted supp(M), to be the set
of prime ideals P in R such that Mp+#0. For any nonzero module M, supp(M) is
not empty. In a noetherian ring it is well known that the minimal elements of
supp(M) are in ass(M).

Corollary 1.3. Let M be a module over a seminoetherian stable ring R. Then the
minimal elements of supp(M) are in ass(M).

Proof. Clearly ass(M) C supp(M). Let P be a minimal element of supp(M). Then
Hom(M, E(R/P))+0. So by Proposition 1.2 there exists Q eass(M) with QCP.
Since Q C supp(M) we have Q=P. [

In a noetherian ring the injective hull of a simple module is artinian. This is not
true for arbitrary stable rings (take any local perfect ring which is not noethcrian).
However we do have a generalization. A module M is called semiartinian if every
nonzero homomorphic image of M has a nonzero socle.

Let M be an R-module. The socle series of M is defined recursively as ‘ollows:

soc; (M) =soc(M),
§0C, 4 1 (M)/s0c, (M) =soc{M/soc,(M)),

soc,(M)= Y, socg(M) when a is a limit ordinal,
A<a

soc(M)=soc,(M) where a is the first ordinal for which
$0C4 (M) =50Cy , | (M).

Thus soc(M/soc(M)) =0. So M is semiartinian if and only if M= soc (M) for some
ordinal. Also note that bei-ig semiartinian is equivalent to having Gabriel dimension
zero.

Proposition 1.4. Let R be a stable ring, and let M be a simple R-module. Then E(M)
is semiartinian.

Proof. Let H be a homomorphic image of E(M). Since Hom(E(M), H)#0, it
follows from the stability of R that Hom(M, H)#0. So M is isomorphic to a sub-
module of H. [

It is well known that every ideal in a noetherian ring satisfies the AR property (in
fact it satisfies the stronger Artin~Rees property). Namely, given an ideal /, a
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finitely generated module M and a submodule N, there exists a positive integer k
such that MI*NNc NI. We will generalize this result to stable rings by the use of
localizing subcategories. Let 7 be a finitely generated ideal of some ring R. Let
F ={MeMod-R | every element of M is annnihilated by some power of /}. Then
7 is a localizing subcategory of Mod-R. Given a module N and a submodule H we
say H is J-dense (or merely dense) if N/H € 7. If N is finitely generated, then HGN
is dense if and only if NI* ¢ H for some integer k. For an arbitrary module N and
submodule X it is not true in general that dense submodules of X come from dense
submodules of N, i.e., a dense submodule of K may not be the intersection of a
dense submodule of N with XK. However, if . is closed under essential extensions
(i.e. J is stable), then every dense submodule of X is of the form HNK where H
is dense in N [311.4]. Thus we have proven the following.

Proposition 1.5. Let R be a stable ring and let I be a finitely generated ideal of R.
Let N be a finitely generated R module, and let K be a submodule of N. Then there
exists an integer r such that NI'OK c KL

We should point out that all the results of this section work for noncommutative
rings as well. The only substitution needed is ‘‘associated prime torsion theory’’ for
‘‘associated prime ideal’’.

2. Examples

Previously, the only examples of stable rings to appear in the literature are either
noetherian or perfect. In this section, using split extersions and subidealizer rings,
we are able to give stable rings which are neither.

Let R be a ring and M an R-module. Then R X »-"wiii denote the split extension
of R by M. Recall that the abelian group structure of this ring is the same as R x M,
while multiplication is defined by (ry, m\)(ry, my) = (r;ry, rymy + myry), for r;e R and
m;e M.

Theorem 2.1. Let R be a stable seminoetherian ring and let M be an R-module. If
M has the property that Hom(M, E) is isomorphic to a submodule of ® E for every
injective R-module E, then Rx M is stable.

Proof. Denote RIXM by T. Let N be a T-module and let H be those elements of
N killed by OXM. Since OXM is nilpotent H is essential in N. Thus
Ep(H)=Ep(N). We claim that Er(H) is isomorphic to the module E where E is
defined in the following manner: The abelian group structure of £ is the same as
Er(H)xHom(M, Ex(H)), while the T-module structure is given by
(r,m)(e, f) = (re+ f(m),7f) for (r,m)e T and (e, f) € E. In general, given an injective
R-module E we will denote the T-module obtained in this manner by
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ExHom(M, E). To prove the claim observe that the R-map H —E, defined by
h—(h,0), is also a T-homomorphism since H is annihilated by 0 x M.

Also note that E=Homg(T, Ex(H)) as T-medules. Thus E is injective over 7.
Finally, identifying H with its image in E we have to show E is an essential extension
of H. Let 0%(e, f)eE. If f=0, then (r,0)(e,0)=(re,0)e H for some re R where
re+0. If f+0, then there exists m € M such that f(m)=#0. So (0, m)(e, f) =(f(m),0)
and we are back to the first case.

Now let E be an injective 7-module and let N be an arbitrary 7-module. Assume
Homy(N, E)=0. Then Hom(H, £)=0 where H is those elements of N killed by
0x M. We know E=E, X Homg(M, E,) and Ep(H)=E, X Homg(M, E,) where E,
and E, are injective R-modules. Also note E; and E, are T-modules where
(0x M)E; =0. Clearly Homg(H, E;) =0, for any R-homomorphism between H and
E, is also a T-homomorphism. Thus Homg(E,, E})=0, since R is stable and
E,=Eg(H). By hypothesis and the previous paragraph E-(H)< @, E, and EC
@;E, as R-modules. Thus Homg(Ef(H),E)=0 which of course implies
Homy(E (H), E)=0. Therefore T is stable. [l

Example 1. Let R be a noetherian ring which is not perfect. Let M be a semisimple
module which contains only finitely many different isomorphism classes of simples.
Given any injective module E, Hom(M, E) is either zero or semisimple. In either
case Hom(M, E) € @ E. Thus, by Theorem 2.1, R X M is stable. However, it is not
perfect and if M is infinitely generated, R X M is not noetherian.

Let 7 be a ring and let A be an ideal of /. Recall that a subring S of T is called
a subidealizer of A in T if S contains 4. In this situation note that given any
S-module N, NA is a T-module. We can deduce from [9, Theorem 1.1, Proposition
1.3(iv)] the following: Let P be a prime ideal of 7 such that A& P and let Q=PNS.
Then Sg is naturally isomorphic to 7p as rings. Furthermore for any T-module
M, Mp is isomorphic to My as modules over this common ring of quotients. Thus,
if E is an injective T-module which is P torsion free, Ep=E is an injective module
over Tp=Sy. So it follows from [3, Corollary 6.8] that E is injective over S.
Finally, note that this argument can easily be generalized to an injective 7-module
which is torsion free over any finite set of prime ideals {Py,...,P,} in T where
AZP; for all i=1,2,...,n.

Before we get to Theorem 2.4, which will give us more examples using sub-
idealizers, we need a coupl: of preliminary results.

Lemma 2.3. Let S be a subidealizer of A in T. Let M and N be T-modules such that
anny A =0. Then any S-homomorphism from M to N is a T-homomorhism.

Proof. Let meM and let fe Homg(M, N). If te T, then f(m)t— f(mt) is killed by
A since tA ¢ S. Thus f(m)t=f(met). 0O
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We also need a criteria for a seminoetherian R not to be stable. Any localizing
subcategory 7 of Mod-R is cogenerated by some injective module E in the sense
that 7 ={M in Mod-R | Hom(M, E)=0}. For instance, if P is a prime ideal of R,
then the collection of P-torsion modules are precisely those modules cogenerated by
E(R/P). A seminoetherian ring R is stable if and only if E(R/P) cogenerates a stable
localizing subcategory for all prime ideals P in R [3, Proposition 20.12]. Our next
lemma gives a criteria for when such a subcategory is not stable.

Lemma 2.3. Let P be a prime ideal in the seminoetherian ring R. The localizirg sub-
category cogenerated by E(R/P) is not stable if and only if there exists a finitely
generated module H such that Hom(H, E(R/P)}#0 yet for all Qe ass(H), Q& P.

Proof. Assume the localizing subcategory cogenerated by E(R/P) is not stable.
Clearly there exists an injective module £ and a homomorphism f:E-—E(R/P)
where f#0 yet for all Q e ass(E), Q& P. So let H be a finitely generated submodule
of £ which is not killed by f.

The converse is clear since we are working over a seminoetherian ring. [

We should note one fact which is rather obvious from the definition. If R is a
stable ring and Q(R) the ring of quotients of R with respect to a multiplicative set,
then Q(R) is also stable.

Theorem 2.4. Let S be a subidealizer of .4 in T where .« is a maximal ideal of S.
If T is noeth:zrian, then S is stable.

Proof. Since T is noetherian it follows from [5, Satz 3.1] that S is seminoetherian.
Thus it suffices to show that every localizing subcategory cogenerated by an in-
decomposable injective module is stable.

Let E be an indecomposable injective S-module such that ass(E)={P} where
P+.#. Let N be an S-module such that Hom(N, E)=0. Assume there exists
S:E(N)—E which is not zero. Notice that anng(.#)=0, so by Lemma 2.2 there
exists a nonzero T-homomorphism from E(N).«# to E.«. Since T is noetherian there
exists Qeassp(E(N).#) and Pcassp(E#) such that QCP. However,
ONSeassg(E(N)) and PNSeassg(E.«). Since QNS PNS we have a contradic-
tion because assg(E(N)) =assg(N). So E cogenerates a stable torsion theory.

Now let E=E¢(S/.4). Assume E does not cogenerate a stable torsion theory. By
Lemma 2.3 there exists a finitely generated S-module H such that Hom(H, E)#0
vet for all Qeass(H), Q% .#. Notice H.«# is a finitely generated 7-module so
assy(H.#) is finite (after all T is noetherian). Alss ncte that if Peassp(H.#),
then .# & P otherwise .4 = PN S € ass(H) a contradiction. So by our discussion prior
to Lemma 2.2 Er(H.#) is injective as an S-module. Since anng(.#)=0 (other-
wise .4 eass(H)) H4 is essential in H. Thus Eq(H)=Eq(HA4)CEr(HA4). Let
{P,P,,...,P,} =assp(H.4). Since T is noetherian, every element of Er(H.#) and
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hence Eg(H) is killed by (P,- P,- Py--- P,)” for some positive integer r. Now let
S H—FE be nonzero. Then there exists 4 € H such that f(h)#0and f(h).# =0. Thus
f(h) is annihilated by .# and (p, - p,---p,)” where p;=P;NS. Clearly p, € assg(H)
so p;&.«. Hence (p;-p, - p,) +.# =S, an impossibility. Thus A cannot exist.
Therefore S is stable.

Example 2. Let R be a noetherian ring and let P be a maximal ideal of R. Then
R + P[x] € R[x] satisfies the relationship of S and T in Theorem 2.4 with .# = P[x].
So R + Pjx] is stable. However it is not noetherian if P is not idempotent, and it is
not perfect as long as R is not perfect.

Example 3. Let M be a finitely generated abelian monoid. Let N be an ideal of M
which is not finitely generated as a semigroup (e.g. let M be the free abelian monoid
on {x, y} and N the ideal generated by the set {x, xy,xy*---}). N' will denote the
submonoid of M obtained by adjoining 1 to N. Then, for any field F, the monoid
ring FN' and FM satisfy the relationship of Theorem 2.4 where .# is the ideal FN.
So FN'! is stable yet it is not noetherian since N is infinitely generated.

Example 4. Let F be an infinite dimensional field extension of a field K. If
T=F[[x]] and S=K+.# where .# is the unique maximal ideal of 7, we are again
in the situation of Theorem 2.4, yet S is not noetherian.

3. When stable implies noetherian

In [2] it was shown that ‘stability’ implies ‘noetherian’ for certain classes of com-
mutative rings. In this section we present more results along those lines. In par-
ticular we s:10w that if R[x] is stable, then R is noetherian. We also prove that a stable
ring with certain properties (satisfied by most of the examples presented in Section
2) that has either finite global dimension or is coherent must be noetherian.

Lemma 3.1. Let R be a stable ring which is not noetherian. Then there exists a maxi-
mal ideal P of R such that Pp/P} is infinitely generated over Rp.

Proof. By [2, Proposition 8] there exists a maximal ideal P such that Rp is not
noetherian. So we can assume R is a stable local ring with maximal ideal P such that
R is not noetherian. Let E be the injective envelope of the simple R module. We
will show that if P/P? is finitely generated, then E is artinian. By virtue of [11,
Theorem 2], this implies R is noetherian, a contradiction.

Assume P/P? is finitely generated over R/P2. It follows by induction that P/P"
is finitely generated over R/P" for any inieger n. Hence R/P" is artinian. Thus
soc,(E)=anng(P"), which is the injective envelope of the unique simple R/P"-
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module is also artinian [10, 4.30]. Now let x € E and let / =anng(x). By Proposition
1.4, E is semiartinian, so R/I is a perfect ring. So P/P? finitely generated implies
that R/I is artinian [7, Lemma 11]. Hence E= U:.~.1 s0c¢,(E). Therefore E/soc,(E)
has an essential, finite dimensional socle. The proof that E is artinian now follows
as in [2, Proposition 12]. [

Theorem 3.2. If the polynomial ring R[x] is stable, then R is noetherian.

Proof. Clearly, by Proposition 1.1 R is stable. Suppose R is not noetherian. By
Lemma 3.1 we can assume R is a local, stable ring with maximal ideal P such that
P/P? is not a finitely generated module. Therefore, we lose rothing if we also
assume that R is a stable ring with a unique, infinitely generated prime ideal P such
that P*=0.

Let H=R/P, then H is a simple R[x]-module. If R[x] is stable, Eg,j(H) should
be semiartinian by Proposition 1.2. We will show that this is not the case.

Since P is infinitely generated and P?=0, it follows that P= @, R/P where I is
infinite. So P[x]= @®; R/P[x]. Let E be the injective null of H over T where T=
R/P[x]. From the exact sequence

0— P[x]>*R[x]>T—0
we obtain

0—Hom4(7, E)—Hom(R[x], E]=Hom¢(P[x], E)—0
]
E

Observe that the middle term of the above sequence is an injective R[x]-module.
We also claim that it is essential extension (as an R[x]-module) of Hom (7, E). For
if ¢ is in the former but not in the latter, then ¢(q)+#0 for some g€ P[x]. Thus
0#q- ¢ € Homy(T, E) since P[x]*=0. Therefore Hom(R[x], E) = Eg(H). On the
other hand

Hom(£x], E)=Homr(@ T, E) = [[ Homp(T, E)=]] E.
1 I 1

Since T is a PID, the infinite product must contain a torsion free T-module. Hence
it is not semiartinian as an R[x]-module. Since it is a homomorphic image of
Epq(H), we have a contradiction. [

Now we will start workiug towards Theorem 3.5 which states that a stable ring
with finite global dimension and certain other properties has to be noetherian.

We will denote the projective (injective) dimension of the module M by pd(M)
(id(M) respectively). The global dimension of the ring R will be denoted gl dim R.

Let R be any local ring with simple module H. Let M be an arbitrary R-module.
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We have an injective resolution

d() dn

0—)M—)E0——-)El—b ----- E"-———-——)...

Then Ext"(H, M)=soc(E,). Now if we assume R is stable and M = H, then a simple
induction argument shows that soc(E,) =0 only if E,=0. Thus we have proven the
following.

Lemma 3.3. Let R be a stable local ring with simple module H. If Ext"(H, H)=0,
then id(H)<n.

Proposition 3.4. A stable seminoetherian ring with finite global dimension is semi-
prime.

Proof. Assume the nilradical N is not zero. Since R is seminoetherian there exists
a€ N such that ann(g)= P, a prime ideal.

The ring Rp has finite global dimension and contains the simple nilpotent ideal
(Ra)p. Let n=idg,((R,)p). Since the ideal (Ra)p is not a direct summand of Rp,
n>0. Consider the short exact sequence

0—(Ra)p—*Rp—(R/Rajp—0.
From which we obtain the exact sequence

o+~ Ext}, (Kp, (Ra)p) = Ext} (Ra)p, (Ra)p) ~ Extl \(R/Ra)p, (Ra)p)— -

P

Clearly the modules on each of the sequence are zero, yet by Lemma 3.3 the middle
term is not zero, quite an impossibility. So N=0.

Definition. A ring R is G-stable if R is stable and R/N has finite Goldie dimension
for every semiprime ideal N. This is equivalent to saying every semiprime ideal is
the intersection of a finite number of prime ideals.

Recall that G-dim(M) stands for the Gabirel dimension of the module M. Assume
R is seminoetherian. It was shown in [4, Proposition 3.3] that if R is a domain, then
R is Gabriel simple, i.e., every factor module has Gabriel dimension less than R.
In any case

G-dim(R) = sup{G-dim(R/P) | P a prime ideal of R}

[4, Lemma 3.1]. So for any seminoetherian ring R, given an ideal 7 such that [ is
not in any minimal prime ideal G-dim(R/7) <. G-dim(R). Also note that if G-dim(R)
is finite and if Q is a prime ideal which is not maximal, then it follows from the
definition that G-dim(Rp) < G-dim(R).

Theorem 3.5. If R is a G-stable ring with finite global dimension and finite Gabriel
dimension, then R is noetherian.
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Proof. By [2, Proposition 8] we can assume R is local with unigue maximal P. We
proceed with induction on G-dim(R). 1f G-dim(R) =0, then every R-module has an
essential socle. Hence by the result of Auslander [1], pd(M)<pd(R/P) for any
R-module M. Thus gl dim R=pd(R/P). However R contains a copy of R/P, so
gldim R=0.

Now assume the theorem is true for Gabriel dimension less than & and suppose
G-dim(Rj=k. By Proposition 3.5, R is semiprime. let P, P,,..., P, denote the
minimal prime ideals of R. By Lemma 3.1, P# P2, So there exists ae P— P? (in P
but not in 72) which is a non-zero divisor. If not, P— P*c P,UP,U---UP, which
by [6, Theorem 83] implies PC P; for some i, a contradiction.

Consider the ring T=R/Ra. Note that T is G-stable and since G-dim(R) is finite
G-dim(7T) < k. We claim pd;(R/P)< . Clearly it suffices to show that pdr(P/Ra)
is finite. By [6, Theorem D, p. 124] we know that pd(P/Pa) is finite. Now con-
sider the exact sequence

0—Ra/Pa— P/Pa—P/Ra—0.

Since R is local and a ¢ P?, RaN P?*=Pa. So Ra/Pa is isomorphic to a submodule
of P/P2. Since P/P? is semisimple there exists a submodule U of P suct *hat
Ra+ U=P and RaNUNP?, Then

RaNU=PaNU/NP2c RaNP?=Pa.

Thus Ra/Pa is a direct summand of P/Pa. So pdr(P/Ra)< o and the claim is
proved.

If Q is a prime ideal containing Ra such that Q # P, then G-dim(Rgy)<k. So by
induction Ry is noetherian. Ry/(Ra)g= TQ(Q the image of Q in T) is of course
noetherian and by {6, Theorem 161] has finite global dimension. Using the classical
Krull dimension we also see that gl dim(7p) <k.

Let /=max(pdr(R/P),k—1). We claim T has global dimension at most /. Sup-
pose N is a T-module with idr(N)>/. Take a T injective resolution of N.

0—+N—+E0—>E1 —-)...E,-—»EI_H —>...
Let Q be a prime ideal of R such that R/QCE,, . By [2, Proposition 1] the exact
sequence

0—Np = (Ep)g = (E)g =~ (El1)g

is an injective resolution of Ng over Ty. Clearly (E},,)g has a nonzero socle (as a
module over T, 0)- So

Ext7, ((R/Q)g, Ng) #0.

But pdr,[(R/Q)gl=</, a contradiction. So T=R/Ra has finite global dimension.
Thus, by induction, it is noetherian. It follows that P is finitely generated. So by
Lemma 3.1, R is noetherian.
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Corollary 3.6. The rings described in Examples 3 and 4 of Section 2 have infinite
global dimersion.

Recall a ring R is called coherent if every finitely generated ideal is finitely
presented. This implies that the annihilator of any finitely generated ideal is again
finitely generated. We will use this to show that in a seminoetherian stable ring,
coherence implies noetherian.

Proposition 3.7. If R is stable, seminoetherian and coherent, then R is noetherian.

Proof. We proceed by induction on G-dim(R). Again by [2, Proposition 8] we can
assume R is local with maximal ideal P.

If G-dim(R) =0, then P is the only prime ideal of R. Thus, P is the annihilator
of some element of R. Since R is coherent, P is finitely generated. So by Lemma
3.1, R is noetherian.

Suppose G-dim(R) =a. Since R is seminoetherian there exists a prime ideal Q of
R such that Q=ann(y), yeR. So Q is finitely generated. Pick x¢ Q. Then
R/(Rx + Q) is stable, coh:rent and by [4, Proposition 3.3] has Gabriel dimension
less than a. Thus by indu:tion R/(Rx+ Q) is noetherian. So P is finitely generated
and again we are done.

Remark. It follows from Proposition 3.7 that all the rings constructed using the
techniques of Section 2 which are not noetherian also cannot be coherent.

We end with some comments on the conditions for R in Theorem 3.5. That R
needs to be G-stable does not appear to be very restrictive since all the stable rings
we have are also G-stable. It would be interesting to know if all stable rings are
G-stable. The fact that R must have finite Gabriel dimension is more restrictive since
it is easy to construct stable rings with infinite Gabriel dimension using the tech-
niques of Section 2. However, we have no counter examples to show that this condi-
tion can’t be dropped.
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