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All rings in our paper are assumed to be commutative with identity. A localizing 
subcategory (hereditary torsion class) is called statple if it is closed under taking 
injective envelopes. A ring R is called stable if every localizing subcategory of 
Mod-R is stable. This is equivalent to the following: For any R-module 1M and for 
any injective R-module E the relation Hom(M, E) = 0 implies Hom(E(M), E) = 0 

where E(M) is the injective envelope of 1M. Examples of such a ring include all 
commutative rings which are either noetherian or perfect. 

It has been shown in fll and 181 that stable rings whether in a commutative or 
noncommutative setting have properties similar to commutative noetherian rings. In 
this paper we present more evidence on the closeness of commutative stable rings 
to commutative noetherian rings. We also give numerous examples of stable rings. 

In Section 1 we give the basic results on stable rings which are of interest by 
themselves as well as useful later on. In Section 2 we present some examples. 
Previously, the only known examples of stable rings were either noetherian or 
perfect. We give families of stable rings which are neither. In Section 3 we prove 
that stability plus various other assumptions imply a ring, is noetherian. As 
corollaries we are able to show that certain rings of the form K+ P, where P is 2 
maximal ideal of a K algebra, have infinite global dimension and are not coherent. 

E~~~~~ (or ~(~) when there is no ambiguity~ will denote the injective envelope 
of an R-module M, and Mod-R is used to denote the category of R-modules. Given 
an ideal I of R and an R-module M, annNI is the largest submodu:e of A4 which 
is killed by I. Finally given a module A4 and a prime ideal P, A.?, is the localization 
of 1M at R 

1. Basic results 

In this section we present basic results about commutative stable rings that will 
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be used throughout the paper. These restrlts, which are well known when I? is 
noetherian (see [6] and [IO] for instances, also highlight the fact that stable rings are 
a generali2ation of noetherian rings. 

roof. Let li;f = R/I be a factor ring of R. Assume HomR{MI E) = 0 where E is an 
inje~t~ve ~wmodule and M is an arbitrary ~~module. clearly Hom~(M, E) = 0. 
Recall that for any ~-rnod~~~ .XS ER(X)={~EER(X)I~~=~). Thus 
Horn~~~~ E~~~~~ = 0, since any homomorphic image of M is killed by I. So by the 
stability of Hom~~~~~M), E~(~~~ =r 0. Since ~~~M~ 5; ATOM) we have the 
proposition. 

he ~~~~~e~ ~~~e~~~~~ will be defined in a categorical setting and the Gabriel 
dimension of a ring R is the Gabriel dimension of the category Nod-I?. Let %f be 
a Grothendieck category. gO is the smallest localizing subcategory of V which is 
generated by the objects of V with finite length; 9r is the smallest localizing sub- 
category of @’ containing those objects ME V that have finite length in the quotient 
category %V9 O, etc. We get a trans~nite filtration 9e 5: 5+ c l I. L; 9 s -) the 
~~~~~e~ f~~~~~?~~~~ where 9*, for a limit ordinal (r, is defined as usual. An object 
ME 5$ for some fl has Gabriel dimension and G*dirn~~~ = a if a = min{ #I ME ii@ 

otherwise M does not have Gabriel dimension. The Grothendieck category V has 
Gabriel dimension and G-dirndls = y if %‘= U (3?* 1 as y) and y is the smallest 
~rdin~ with this property. If an &module M is noetherian~ then it has Gabriel 
Dimensions For details and proofs see [4), Note that their definition is slightly dif- 
ferent than ours since they let 9 o = (0). However, for infinite ordinals the defini- 
tions agree. 

We say a ring I? is seminoetherian if it has Gabriel dimension. Such rings have 
two prope~ies that are useful to us. First, given a nonzero ~~rnod~le M, ass~{M), 
(or Assam) when there is no ambiguity~ which denotes the set of prime ideals of R 
associated to M, is not empty if R is seminoetherian* Second, to check stability in 

thermal ring we only have to check some of the locali2ing subcategories 
g We will go into more detail on this later. It turns out that all the examples 

of stable rings we giw in the paper are in fact seminoetherian. However, we don’t 
know if this is by necessity 

Given an R-module M, S(n/f) will be the sum of alf submodules of M which are 
isomorphic for some prime ideal P (clearly PE ass(M)), If R is semi- 
noetherian~ s essential in &C 
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Proof, The ‘if’ dire& is clear. Conversely, assume ~orn~(~, N) #O. Then 
Hom~(~(M), N) # 8 sine‘ R is semino~th~rian and stable. Thus H~rn~~~/Q~ N) # 0 
for some QE ass(M), Let f: R/Q-W be nonzero. There exists 8% ass(f(&‘Q) C_ 
ass(N). Clearly Q iz; P. D 

For an R-module M we define the support of M, denoted supp(M)~ to be the set 
of prime ideals p in R such that M+O. For any nonzero module M, supp(M) is 
not empty. In a noetherian ring it is well known that the minimal elements of 
supp(M) are in ass(M). 

CoroIlsry 1.3. Let M be a rn~~~~e over a seminoe~~eri~n s~~~~e ring R. Teen the 
rni~imu~ elements of supp(M~ are in ass(M). 

Proof, Clearly ass(M~ c supp~M). Let P be a minimal element of supp(M~. Then 
Hornet, ~~~/~)~ j~0. So by Proposition I .2 there exists Q E ass(M) aide Q c P. 
Since Q c supp(M) we have Q =P. El 

In a noetherian ring the injective hull of a simple module is artinian. This is not 
true for arbitrary stable rings (take any local perfect ring which is not noethcrian). 
However we do have a generalization, A module M is called serniffr~in~~n if {every 
nonzero homomorphic image of M has a nonzero socle. 

Let M be an R-module. The socle series of M is defined recursively as eollows: 

soq (M) = SW(M), 

sot,(M) = c socP(M) when a is a limit ordinal, 
B<a 

G(M)= sot,(M) where dy is the first ordinal for which 

so~~(M~ = sot,, I CM). 

Thus soc~M/~(M)) = 0. So M is semiartinian if and only if M= so~~(~~~ for some 
ordinal. Also note that b&g semiartinian is equivalent to having Gabriel dimension 
zero. r 

Proof. Let H be a homomorphic image of E(M). Since Horn@(M), H) #O, it 
follows from the stability of R that Hom(M, H) No. So M is isomorphic to a sub- 
module of H. D 

It is well known that every ideal in a noetherian ring satisfies the AR property (in 
fact it satisfies the stronger Artin-Rees property). Namely, given an ideal I, a 
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finitely generated module M and a submodule N, there exists a positive integer k 
such that ~~~~N~N~. We will generalize this result to stable rings by the use of 
localizing subcategories. Let f be a finitely generated ideal of some ring R. Let 
Y= {ME Mod-R 1 every element of 1M is annnihilated by some power of I}. Then 
Y is a localizing subcategory of Mod-R. Given a module N and a submodule W we 
say H is sdense {or merely dense) if N/HE .9i If N is finitely generated, then H c N 
is dense if and only if Nlk C_ H for some integer k. an arbitrary module N and 
submodule k is in general that dense of A’ come from 

of N, i.e., a of may be the intersection 
dense submodule of with K. I-Iowever, is closed under 

9- is stable), then of .K is of the form H 
is dense in 23 11,4f. Thus have proven 

R be a I be a of R. 
N be qfinitely generated R module, K be a of N. Then there 

an integer r z KL 

We should of this section work for noncommutative 
rings well. is “associated prime torsion 
‘ ‘associated prime ideal”. 

2. Examples 

Previously, the only examples of stable rings to appear in the literature are either 
noetherian or perfect. In this section, using split extersions and subidealizer rings, 
we are able to give stable rings which are neither. 

Let R be a ring and AZ an R-module. Then R IX i~~%~iii denote the split extension 
of R by M. Recall that the abelian group structure of this ring is the same as R x AI, 
while multiplication is defined by (rl , ml)(ri, m2) = (rlr2, rlm2 + ml r2), for ri E R and 
~i~~* 

~~e~re~ 2.1, Let R be a stable seminoetherian ring and let M be an R-~odu~e~ If 
M has the property that Hom(M, E) is isomorphic to a submodule of @ E for every 
injective R-module E, then R PC M is stable. 

Proof. Denote R o( M by T. Let N be a T-module and let H be those elements of 
N killed by ObcIM. Since 0 IX A4 is nilpotent W is essential in N. Thus 
ET(H) = ET(~). We claim that E=(H) is isomorphic to the module J!? where E is 
defined in the following manner: The abelian group structure of A? is the same as 
ETCH) x ~~rn(M,~~~H))~ while the T-module structure is given by 
(r, m)(e, f) = Ire + f(m), rf) for (r, m) E T and (e, f) EJ?. In general, given an injective 
R-module .E we will denote the T-module obtained in this manner by 



)* To prove the claim serve that the R-map H-4, defined by 
h -+(h, O), is also a T-ho is annihilated by 080lc 

adules. Thus E is ~njective aver T. 
E we have ta show E is an essential extension 

EH for some r~ 
f Sa (0, m)fe* f) = ( 

e and fet N be an arbitrary T=module. Assume 
=O where .H is those elements of N killed by 

Et and E2 are ~m~dules where 
y ~-h~m~murph~sm between H and 

1 El) = 0, since 

Example 1. Let R be a noetherian ring which is not perfect. Let M’ be a semisimple 
rn~du~e which contains only finitely many different is~m~rphism cl sses of simples. 
Given any injectiv ru or semisimple. In either 
case ~~~~~~~ E) C_ is stable. however, it is not 
perfect and if ~ i finitely venerated, R DC M is nat nuet~~eri 

Let T be a ring and let A be an ideal of K Recall that a subrin~ S of T is called 
tains A. In this situation note tha 

can deduce fro 
1.3(iv)j the ~~~l~win : Let P be a prime ideal of 7’ SIX 
Then SQ is nat rphic to TP as rings. Furthermore for any T-module 
M, MP is isoma as modules over this corn on ring of quotients* Thus, 
if E is an injective T- e wbicb is P torsio free, I$= E is an ~nj~ctive rn~d~le 
over Tp= S& So it follows from 13, ~~r~l~ary 6, is injective Over S. 

Fin~ly~ note that this ar~uInent can easily be generalized to an injective ~rn~d~~e 
which is torsion free Over *any finite set of prime ideals (P#, . (. , PR) in T where 

em 2.4, which will give us mare ~xarn~~es using sub- 
idealizers* we need a ~~~~~1~ of preliminary results. 
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We also need a criteria for a seminoetherian R not to be stable. Any localizing 
subcategory F of Mod-R is cogenerated by some injective module E in the sense 
that Y= {M in Mod-R 1 Hom(M, E) = 0). For instance, if P is a prime ideal of R, 
then the collection of P-torsion modules are precisely those modules cogenerated by 
E(R/P). A seminoetherian ring R is stable if and only if E(R/P) cogenerates a stable 
localizing subcategory for all prime ideals P in R [3, Proposition 20.121. Our next 
lemma gives a criteria for when such a subcategory is not stable. 

Lemma 2.3. Let P be a prime ideal in the seminoetherian ring R. The locaii&q sub- 
category cogenerated by E(R/P) is not stable if and only if there exists a finiteIy 
generated module H such that Hom(H, E(R/P)) # 0 yet for all Q e ass(H), Qg P. 

Proof. Assume the localizing subcategory cogenerated by E(R/P) is not stable. 
Clearly there exists an injective module E and a homomorphism f : E-+E(R/P) 
where f + 0 yet for all Q E ass(E), Q$Z P. So let H be a finitely generated submodule 
of E which is not killed by f. 

The converse is clear since we are working over a seminoetherian ring. q 

We should note one fact which is rather obvious from the definition. If R is a 
stable ring and Q(R) the ring of quotients of R with respect to a multiplicative set, 
then Q(R) is also stable. 

Theorem 2.4. bt S be a subidealizer of. /l in T where , ff is a maximal ideal of S. 
I’f T is noethrrian, then S is stable. 

Proof. Since T is noetherian St follows from [S, Satz 3. l] that S is seminoetherian. 
Thus it suffices to show that every localizing subcategory cogenerated by an in- 
decomposable injective module is stable. 

Let E be an indecomposable injective S-module such that ass(E) = {P} where 
PAN. Let N be an S-module such that Hom(N, E) =O. Assume there exists 
f: E(N)+E which is not zero. Notice that ann&&) =0, so by Lemma 2.2 there 
exists a nonzero T-homomorphism from E(N).& to EA. Since T is noetherian there 
exists QE assr(E(N).,&) and PE assr(E.,&) such that Q 5 P. However, 
Qn S E asss(E(N)) and Pn S E asss(E,A’(). Since Qn S c P(I S we have a contradic- 
tion because asss(E(N)) = asss(N). So E cogenerates a stable torsion theory. 

Now let E= Es(S/&‘). Assume E does not cogenerate a stable torsion theory. By 
Lemma 2.3 there exists a finitely generated S-module H such that Hom(H, E) #0 
yet for all Q c ass(H), Qg d. Notice HLA/ is a finitely generated T-module so 
assr(H-A’() is finite (after all T is noetherian). Also liote that if P~:ass~(H.n/), 
then A !Z P otherwise d = Pfl S E ass(H) a contradiction. So by our discussion prior 
to Lemma 22 &(H,A’L) is injective as an S-module. Since ann&R) =0 (other- 
wise JZ E ass(H)) HA is essential in H. Thus Es(H) = Es(H& E ET(HA). Let 
{P,,PZ, 0.9 , Pn} = assT(Hd). Since T is noetherian, every element of ET(HA) and 
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hence Es(H) is killed by (PI l P2 l P3 -0. P,)’ for some positive integer I’. Now let 
f: H-+E be nonzero. Then there exists h E H such that f(h)#O and f(h). /f = 0. Thus 
f(h) is annihilated by -4 and (~1 l p2 l ** p,)' where pi = Pins- Clearly pi E ass&f) 
so pi I;f . N. Hence (p! l p2 l p,J+ . f/ = S, an impossibility. Thus H cannot exist. 
Therefore S is stable. 

Example 2. Let R be a noetherian ring and let P be a maximal ideal of R. Then 
R + P[x] SZ R[x] satisfies the relationship of S and T in Theorem 2.4 with . /f = P[x]. 
So R -I- P[x] is stable. However it is not noetherian if P is not idempotent, and it is 
not perfect as long as R is not perfect. 

Example 3. Let M be a finitely generated abelian monoid. Let N be an ideal of M 
which is not finitely generated as a semigroup (e.g. let M be the free abelian monoid 
on {x, y} and N the ideal generated by the set {x,xy, xy2 l ..}). N’ will denote the 
submonoid of M obtained by adjoining 1 to N. Then, for any field F, the monoid 
ring FN’ and FM satisfy the relationship of Theorem 2.4 where .& is the ideal FN. 
So FN’ is stable yet it is not noetherian since N is infinitely generated. 

Example 4. Let F be an infinite dimensional field extension of a field K. If 
T= F[ [x]] and S = K+ ./( where ,,a’f is the unique maximal ideal of T, we are again 
in the situation of Theorem 2.4, yet S is not noetherian. 

3, When stable implies noetherian 

In [2] it was shown that ‘stability’ implies ‘noetherian’ for certain classes of com- 
mutative rings. In this section we present more results along those lines. In par- 
ticular we s-row that if R[x] is stable, then R is noetherian. We also prove that a stable 
ring with certain properties (satisfied by most of the examples presented in Section 
2) that has either finite global dimension or is coherent must be noetherian. 

Lemma 3.1. Let R be u stable ring which is not noetherian. Then there exists a maxi- 
mal ideal P of R such that Pp/Pi is infinitely generated over Rp. 

Proof. By [2, Proposition 81 there exists a maximal ideal P such that RP is not 
noetherian. So we can assume R is a stable local ring with maximal ideal P such that 

R is not noetherian. Let E be the injective envelope of the simple R module. We 
will show that if P/P2 is finitely generated, then E is artinian. By virtue of [ 11, 

Theorem 21, this implies R is noetherian, a contradiction. 
Assume P/P2 is finitely generated over RiP2. It follows by induction that P/p 

is finitely generated over R/P” for any integer n. Hence R/P” is artinian. Thus 
sot,(E) = ann&P”), which is the injective envelope of the unique simple R/P”- 
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is also artinian [ 10,4.30]. Now let XE E and let I= ann&). By Proposition 
1.4, E is semiartinian, so R/l is a perfect ring. So f/P2 finitely generated implies 
that R/I is artinian [7, Lemma 111. Hence E = U,“= I sot,(E). Therefore E/sot,(E) 
has an essential, finite dimensional socle. The proof that E is artinian now follows 
as in [2, Proposition 121. D 

Theorem 3.2. If the polynomial ring R[.xJ is stable, then R is noetherian. 

Proof. Clearly, by Proposition 1.1 R is stable. Suppose R is not noetherian. By 
Lemma 3.1 we can assume R is a local, stable ring with maximal ideal P such that 
P/P2 is not a finitely generated module. Therefore, we lose nothing if we also 
assume that R is a stable ring with a unique, infinitely generated prime ideal P such 
that P2 = 0. 

Let H= R/P, then H is a simple R[x]-module. If R[x] is stable., &l&Y) should 
be semiartinian by Proposition 1.2. We will show that this is not the case. 

Since P is infinitely generated and p = 0, it follows that P= Or R/P where I is 
infinite. So P[x] = @)I R/P[x]. Let E be the injective null of H over T where T= 
R/P[x]. From the exact sequence 

O+P[x]+R[x]+T-,O 

we obtain 

O-)Hom~(r E)+Homr(R[x], E]-+HomT(R[~], E)-+O 
II 

E 

Observe that the middle term of the above sequence is an injective R[x]-module. 
We also claim that it is essential extension (as an R[x]-module) of Homr(T, E). For 
if cp is in the former but not in the latter, then p(q) #O for some Q E P[x]. Thus 
0 + q l ~7 E Homr( T, E) since P[x] 2=0. Therefore Homr(R[x], E) = E&H). On the 
other hand 

Homr(P[X], E) = Homr 2: n Homr( T, E) = n E. 
I I 

Since T is a PID, the infinite product must contain a torsion free T-module. Hence 
it is not semiartinian as an R[x]-module. Since it is a homomorphic image of 
ER&Y), we have a contradiction. 0 

Now we will start working towards Theorem 3.5 which states that a stable ring 
with finite global dimension and certain other properties has to be noetherian. 

We will denote the projective (injective) dimension of the module M by pd(M) 
(id(M) respectively). The global dimension of the ring R will be denoted gl dim R. 

Let R be any local ring with simple module N. Let M be an arbitrary R-module. 



Commutative torsion stable rings 29 

We have an injective resolution 

O+M_*Eo 
do -E +...-•E 4 

1 A... n 

Then Ext”(H, M) = soc(E,). Now if we assume R is stable and M= H, then a simple 
induction argument shows that soc(E,J = 0 only if E, = 0. Thus we have proven the 
following. 

Lemma 3.3. Let R be a stable local ring with simple module H. If Ext”(H, H) = 0, 
then id(H) < n. 

Proposition 3.4. A stable seminoetherian ring with finite global dimension is semi- 
prime. 

Proof. Assume the nilradical N is not zero. Since R is seminoetherian there exists 
a e N such that arm(a) = P, a prime ideal. 

The ring RP has finite global dimension and contains the simple nilpotent ideal 
(Ra)p. Let n =idRp((R&). Since the ideal (Ra), is not a direct summand of Rp, 
n >O. Consider the short exact sequence 

From which we obtain the exact sequence 

•og+E~t&(Rp, (Ra)+Ext&((Ra)p, (Ra)p) -+Ext;iz * CWRab, UWpP- 

Clearly the modules on each of the sequence are zero, yet by Lemma 3.3 the middle 
term is not zero, quite an impossibility. So N= 0. 

Definition. A ring R is G-stable if R is stable and R/N has finite Goldie dimension 
for every semiprime ideal N. This is equivalent to saying every 7emiprime ideal is 
the intersection of a finite number of prime ideals. 

Recall that G-dim(M) stands for the Gabirel dimension of the module M. Assume 
R is seminoetherian. It was shown in [4, Proposition 3.31 that if R is a domain, then 
R is Gabriel simple, i.e., every factor module has Gabriel dimension less than R. 
In any case 

G-dim(R) = sup{G-dim(R/P) 1 P a prime ideal of R} 

[4, Lemma 3. I]. So for any seminoetherian ring R, given an ideal I such that I is 
not in any minimal prime ideal G-dim(R/I) <: G-dim(R). Also note that if G-dim(R) 
is finite and if Q is a prime ideal which is not maximal, then it follows from the 
definition that G-dim(R,) < G-dim(R). 

eorem 3.5. If R is a G-stable ring with finite giobal dimension and finite Gabriel 
dimension, then R is noetherian. 
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&oof. By [2, Proposition 81 we can assume R is local with unique maximal P. We 
proceed with induction on G-dim(R). If G-dim(R) = 0, then every R-module has an 
essential socle. Hence by the result of Auslander [ 11, pd(M) s pd(R/P) for any 
R-module M. Thus gl dim R = pd(R/P). However R contains a copy of R/P, so 
gldimR=O. 

Now assume the theorem is true for Gabriel dimension less than k and suppose 
G-dim(R) = k. By Proposition 3 5, R is semiprime. let PI, P2, . . . ) P,, denote the 
minimal prime ideals of R. By Lemma 3.1, P# P*. So there exists a e P - P* (in P 
but not in P*) which is a non-zero divisor. If not, P- P* c PI U P2U 9 l - UP, which 
by [6, Theorem 831 implies P c Pi for some i, a contradiction. 

Consider the ring T= R/Ra. Note that T is G-stable and since G-dim(R) is finite 
G-dim(T) c: k. We claim pd=(R/P) < 00. Clearly it suffices to show that pdT(P/Ra) 
is finite. By (6, Theorem ID, p. 1241 we know that pd*(P/Pa) is finite. Now con- 
sider the ex.act sequence 

O+Ra/Pa+P/Pa-,P/Ra-+O. 

Since R is local and a $ P*, Ran P* = Pa. So Ra/Pa is isomorphic to a submodule 
of P/P*. Since P/P* is semisimple there exists a submodule U of P suck ‘hat 
Ra+U=P and RafWflP*. Then 

Thus Ra/Pa is a direct summand of P/Pa. So pd,(P/Ra)< a and the claim is 
proved. 

If Q is a prime ideal containing Ra such that Q# P, then G-dim(R,) c k. So by 
induction RQ is noetherian. RQ/(Ra)Q= To@ the image of Q in T) is of course 
noetherian and by [6, Theorem 1611 has finite global dimension, Using the classical 
Krull dimension we also see that gl dim( TQ) < k. 

Let I= max(pdT(R/P), k - 1). We claim T has global dimension at most 1. Sup- 
pose N is a T-module with id,(N)>!. Take a T injective resolution of N. 

Let Q ble a prime ideal of R such that R/Q E El+ 1. By [2, Proposition l] the exact 
sequence 

is an injective resolution of NQ over T& Clearly (El+ I)~ has a nonzero socle (as a 
module over 7”). So 

ExtG’((R/Q)Q, No) +O. 

But pd,, [(R/Q)gl 5 I, a contradiction. So T= R/Ra has finite global dimension. 
Thus, by induction, it is noetherian. It follows that P is finitely generated. So by 
Lemma 3.1, R is noetherian. 
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Corollary 3.6. The rings described in Examples 3 and 4 of Section 2 have infinite 
global dimension. 

Recall a ring R is called coherent if every finitely generated ideal is finitely 
presented. This implies that the annihilator of any finitely generated ideal is again 
finitely generated. We will use this to show that in a seminoetherian stable ring, 
coherence implies noetherian. 

Proposition 3.7. If R is stable, seminoetherian and coherent, then R is noetherian. 

Proof. We proceed by induction on G-dim(R). Again by [2, Proposition 81 we can 
assume R is local with maximal ideal P. 

If G-dim(R) = 0, then P is the only prime ideal of R. Thus, P is the annihilator 
of some element of R. Since R is coherent, P is finitely generated. So by Lemma 
3.1, R is noetherian. 

Suppose G-dim(R) = cy. Since R is seminoetherian there exists a prime ideal Q of 
R such that Q= arm(y), y E R. So Q is finitely generated. Pick xe Q. Then 
R/(Rx + Q) is stable, coh(:rent and by 14, Proposition 3.31 has Gabriel dimension 
less than CC Thus by indulztion R/(Rx + Q) is noetherian. So P is finitely generated 
and again we are done. 

Remark. It follows from Proposition 3.7 that all the rings constructed using the 
techniques of Section 2 which are not noetherian also cannot be coherent. 

We end with some comments on the conditions for R in Theorem 3.5. That R 
needs to be G-stable does not appear to be very restrictive since all the stable rings 
we have are also G-stable. It would be interesting to know if all stable rings are 
G-stable. The fact that R must have finite Gabriel dimension is more restrictive since 
it is easy to construct stable rings with infinite Gabriel dimension using the tech- 
niques of Section 2. However, we have no counter examples to show that this condi- 
tion can’t be dropped. 
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